Problem 10

We define the shortest distance from a vertex i to a vertex j on a graph as the number of edges in a path from i to j that contains the smallest number of edges, except that the shortest distance is $+\infty$ when no such path exists and that it is 0 when i and j are identical.

(1) Let us consider the directed graph shown below.

- (A) Show the adjacency matrix.
- (B) Show a matrix S, whose element $s_{i,j}$ is the shortest distance from a vertex i to a vertex j.
- (2) Suppose we are given a simple directed graph G = (V, E), where the vertex set
 - $V = \{1, 2, ..., n\}$ and E is the edge set. E is represented by a matrix $D^{(0)} = (d_{i,j}^{(0)})$, where

$$d_{i,j}^{(0)} = \begin{cases} 0 & \text{(if } i = j) \\ 1 & \text{(if an edge } i \rightarrow j \text{ exists).} \\ +\infty & \text{(otherwise)} \end{cases}$$

- (A) Let $V_{i,j}^{(k)} = \{1, 2, ..., k\} \cup \{i, j\}$. Let $E_{i,j}^{(k)}$ be the set of edges in E that start from and end at a vertex in $V_{i,j}^{(k)}$. Let $d_{i,j}^{(k)}$ be the shortest distance from a vertex i to a vertex j on a directed graph $G_{i,j}^{(k)} = (V_{i,j}^{(k)}, E_{i,j}^{(k)})$, and let $D^{(k)} = (d_{i,j}^{(k)})$. Express $D^{(1)}$ in terms of $D^{(0)}$.
- (B) $D^{(k+1)}$ can be computed from $D^{(k)}$ as follows. Fill in the two blanks.

$$d_{i,j}^{(k+1)} = \min(d_{i,j}^{(k)}, [] + [])$$

(C) Given G, show an algorithm to compute the all-pair shortest distances, and find its time complexity with regard to n.

(1) (A)

 $(1) (A) D^{(1)} = (d_{\bar{z},\bar{j}}^{(1)}) = \min(d_{\bar{z},\bar{j}}^{(0)}, d_{\bar{z},\bar{j}}^{(0)} + d_{\bar{l},\bar{j}}^{(0)})$ $\Rightarrow D^{(1)} = \min(D^{(0)}, \bar{E}_{\bar{z},\bar{j}} + E_{\bar{l},\bar{j}})$

(B)
$$d_{\hat{z},\hat{j}} = min(d_{\hat{z},\hat{j}}^{(k)}, d_{\hat{z},k+1}^{(k)} + d_{k+1,\hat{j}})$$

(c) floyd (
$$G(V,E)$$
) {
initially $d_{2:j}(0)$ // operation in (>)
for (k=1; k<= |V|; k++)
for (i=1; i<=|V|; i++)
for (j=1; j<=|V|; j++)
 $d_{2:j}^{(k+1)} = min(d_{2:j}^{(k+1)} = d_{2:k}^{(k+1)} + d_{k:j}^{(k+1)})$
time complexity = O(n³)