Problem 10

We define the shortest distance from a vertex i to avertex j on a graph as the number of
edges in a path from i to j that contains the smallest number of edges, except that the
shortest distance is +% when no such path exists and that it is 0 when i and j are identical.

(1) Let us consider the directed graph shown below.

(A) Show the adjacency matrix.

(B) Show a matrix S, whose element s, ; is the shortest distance from a vertex i toa
vertex .

(2) Suppose we are given a simple directed graph G = (V/, E), where the vertex set
V={1,2,....,n} and E isthe edgeset. E isrepresented by a matrix D = (di(ﬂ) ), where
0 (fi=j)
di) =11 (if an edge i —  exists)-

+o0  (otherwise)

(A) Let VD ={1,2,...,k} U{i,j}. Let E") bethesetofedgesin E that start from and
end at a vertex in Vl(f ) Let di(,’j.) be the shortest distance from a vertex i to a vertex
J onadirected graph G'*) = (VP E["), and let D" = (di(’;)). Express D' in

i,j °
terms of D@

(B) D“™ can be computed from D™ as follows. Fill in the two blanks.

dy =l [+ [])

i.j?

(C) Given G, show an algorithm to compute the all-pair shortest distances, and find its
time complexity with regardto ».
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