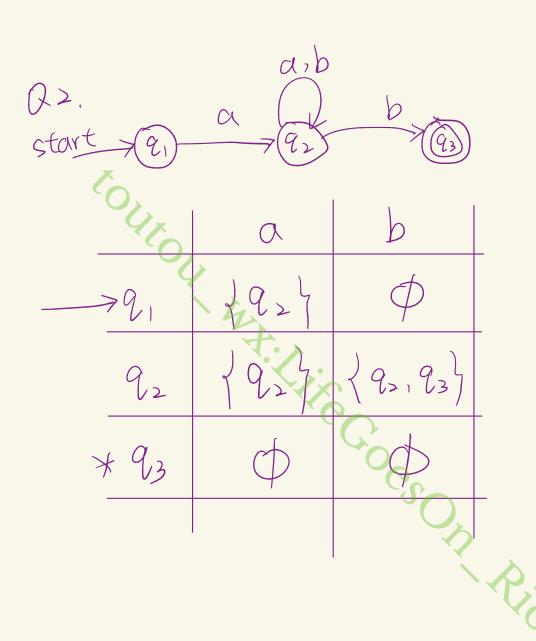
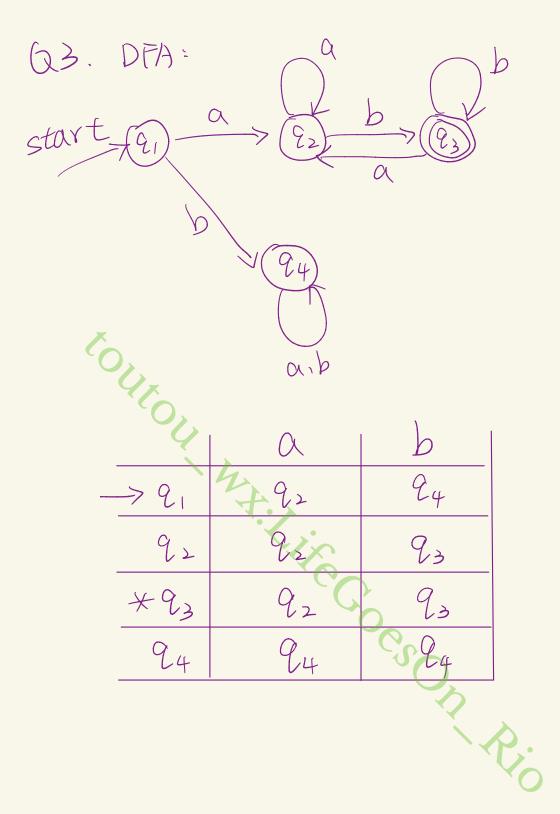
Master's Specialized Program Subjects

[Formal Language, Theory of Computation, Discrete Mathematics]

Question Number


S - 6


Question is translated in English in the section below; this translation is given for reference only.

Answer the following questions about languages $L_1 = \{a(a|b)^n \mid n \ge 0\}$ and $L_2 = \{(a|b)^n b \mid n \ge 0\}$ on an alphabet $\Sigma = \{a, b\}$, where $(a|b)^n$ denotes n repetitions of a or b.

- Q.1 Write the production rule set P_1 of the grammar $G_1 = (\{S\}, \Sigma, P_1, S)$ generating L_1 , where S is the start symbol.
- Q.2 Write the transition table of a nondeterministic finite automaton M_3 accepting L_3 $L_1 \cap L_2$ and consisting of three states including the start state q_1 and a final state q_3 .
- Q.3 Write the transition table of a deterministic finite automaton with the smallest number of states equivalent to the automaton M_3 . Here the transition table of a deterministic finite automaton must explicitly specify all the transitions.
- Q.4 A subset of a regular language is not always a regular language. Demonstrate this by taking L_3 and $L_4 = \{a^m b^m \mid m \ge 1\}$ as examples.
- Q.5 Answer whether $L_5=\{a^kb^kc^k\,|\,k\geq 1\}$ is a context-free language or not. Then prove it using the pumping lemma ($m{uvwxy}$ theorem).

$$QI. S \rightarrow Sa Sb a$$

Q4. $L_3 = \int a(a|b)^n b | n \ge 0 y$, thus L_3 is regular language. $L_4 = \int a^m b^m | m \ge 1 y$ is a subset of L_3 .

Suppose L_4 is regular language, then there will be $w = a^n b^n = xy \ge 1$, $\begin{cases} xy^2 \ge E_4, \ \forall z \in [0,1,2,\cdots] \\ |y| > 0 \end{cases}$ Let $y = a^n b = xy \ge 1$.

⇒ $xy^0 \ge = a^{N-k} b^N + 14$ thus 14 is not regular language, though $14 \le 13$.

Q5: Suppose 15 is context-free language that there will be w=abc"=uvwxyz UV2WX2Y ELS, Y220 $(0 < k \leq N)$ it can be easily drawn from 5 conditions above that avwx°z \$ 150, thus 15
is not context—free (anguage.